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Abstract

Residual impurities and process-introduced electrically active impurities
have long been a source of producibility- and performance-related
limitations in Hg, Cd,Te materials and devices. Considerable effort has
been expended to reduce the impurity content of II-VI substrate
materials and to control the level of both donor and acceptor impurities
in thin-film sensing layers. In an effort to develop the next major
breakthrough in Hg, .Cd,Te materials and device technology, the
Communications-Electronics Command (CECOM) Night Vision and
Electronic Sensors Directorate (NVESD) has been working on a novel
technology tool called the NVESD “microfactory.” This MBE-based
(molecular beam epitaxy) materials growth and device-fabrication tool is
designed to allow for epitaxial materials growth, device fabrication, and
passivation processes to be completed in situ in the vacuum system.
However, controlled intentional doping of these layers has been
hampered by high n-type background carrier concentrations in some of
the layers after the mercury vacancy anneal. In this work we analyzed a
number of MBE Hg, .Cd Te layers, bulk Cd,,Zn,Te, and CdTe substrates
using secondary ion mass spectrometry (SIMS) to qualitatively determine
the major species responsible for the high n-type behavior and their
possible sources.
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1. Introduction

Hg, .Cd,Te has become the detector material of choice for most strategic
and tactical military infrared imaging applications in the 3- to 5-um and
8- to 12-um regions [1]. Residual impurities associated with substrates and
source materials, and also process-introduced electrically active impurities
have long been a source of producibility- and performance-related limita-
tions for this material system. Considerable effort has been expended to
reduce the impurity content of II-VI substrate materials and to control the
level of both donor and acceptor impurities in thin-film sensing layers [2].
Many advanced device structures cannot be successfully fabricated at the
high growth temperatures required by the current mature liquid-phase
epitaxy growth process [3,4]. Hence, a substantial research effort has been
under way to develop improved vapor-phase epitaxial growth techniques
for II-VI device materials. Infrared focal plane arrays (FPAs) exhibiting a
high level of performance have been fabricated from sensing layers grown
by both molecular beam epitaxy and metal-organic chemical vapor
deposition techniques. In an effort to develop the next major breakthrough
in Hg, .Cd,Te materials and device technology, the Communications-
Electronics Command (CECOM) Night Vision and Electronic Sensors
Directorate (NVESD) has been developing a novel technology tool called
the NVESD “microfactory” [5,6]. This MBE-based tool is designed to allow
for epitaxial materials growth, device fabrication, and passivation processes
to be completed in situ in the vacuum system. The quality of MBE
Hg, .Cd,Te layers grown in the microfactory as demonstrated by etch pit
density, double crystal rocking curve, energy dispersive x-ray, and Fourier
transform infrared transmission measurements has shown steady improve-
ment. However, controlled intentional doping of these layers has been ham-
pered by high n-type background carrier concentrations in some of the lay-
ers after the mercury vacancy anneal. Van der Pauw Hall measurements
indicated that the background donor concentrations were typically on the
order of 10" cm™ for these cases. In this work we analyzed a number of
MBE Hg,_Cd,Te layers, bulk Cd, ,Zn,Te, and CdTe substrates using sec-
ondary ion mass spectrometry (SIMS) to qualitatively determine the major
species responsible for the high n-type behavior and their possible sources.




2. Experimental Detail

The MBE Hg,_ Cd,Te layers were grown in a modified Fisons VG-8 1I-VI
chamber. Epitaxial Hg, .Cd Te growth was accomplished with Hg, CdTe,
and Te cells. The mercury, cadmium, and tellurium fluxes were 2.3 by 10,
2.8 by 10, and 2.9 by 10 Torr, respectively. The substrate was indepen-
dently heated to 180 °C as measured by optical temperature correlation tech-
niques. The Hg, Cd, Te layers were grown on 1.5 by 1.5 cm, <211>B com-
mercially available bulk cadmium zinc telluride (Cd, ,Zn,Te) substrates.
The growth rate was approximately 1.5 pm per hour. Buffer layers were
not grown on the Cd, ,Zn,Te substrates prior to the initiation of Hg,_Cd, Te
growth.

SIMS measurements were taken with an Atomika 3000-30 Ionprobe
A-DIDA." Depth profiles were made with oxygen at 6-, 9-, and 12-keV
primary ion energies. The primary ion gun was equipped with an oxygen
cold cathode source. Abetter signal-to-noise ratio (SNR) and a higher nega-
tive ion yield could be obtained with a cesium ion gun; however, a cesium
source was not available on our system during this work. With the oxygen
source, it was still possible to get signal count rates that were three orders of
magnitude higher than the background noise level. Table 1 shows a typical
set of instrumental operating parameters.

Table 1. Typical data  Primary ions: Oxygen

acquisition parameters Jon energy: 6 keV

for the chlorine-35 Beam current: 100 nA

profiles. Scan width: ~ 0.200 mm
Scan speed: 2 s/frame
Scan gate: 30%

*Atomika Analysetechnik GmbH, Bruckmannring 6, W-8042 Oberschleissheim, Miinchen,
Germany.



3. Results and Discussion

Table 2. n-type dopants
in Hg_,Cd,Te

Verified n-type dopants in Hg; ,Cd,Te [7,8,9] are shown in table 2. The ini-
tial motivation to study the chlorine content in the epitaxial layers was based
on the results of in situ Auger analysis of a number of these layers. The
Auger analysis indicated that the surfaces were characterized by very high
chlorine concentrations. Although it is common to observe chlorine con-
tamination on semiconductor surfaces exposed to the ambient environment,
the large chlorine Auger signals obtained from these sample surfaces clearly
indicated that a more detailed analysis of the chlorine distribution in these
materials was required. Chlorine situated on a tellurium site in Hg,_,Cd,Te
is an n-type dopant [7-9]. Marais and Botha et al [10,11] also showed that
chlorine in solid state recrystallized Hg, .Cd,Te exhibits donor behavior at
varying activation levels. Over the concentration range of 1 x 107 cm™ to
4 x 10™ cm=, the activation level is a function of its concentration in the
crystal. Faurie et al [12] demonstrated that impurity diffusion from bulk,
commercial CdZnTe substrates can play a major role in the electrical prop-
erties of HgCdTe IR sensing layers grown by molecular beam epitaxy on
these substrates.

Impurity

(site) Major isotopes
Zn (i) 64 66 68
Hg (i) 202 200 199
B (m) 11 10 —
Al (m) 27 — —
Ga (m) 69 71 —
In (m) 115 113 —
Si (m) 28 29 30
Ge (m) 74 72 70
Sn (m) 120 118 116
Pb (m) 208 206 207
O (i) 16 17 18
F (Te) 19 — —
Cl (Te) 35 37 —
Br (Te) 79 81 —
I(Te) 127 — —
Fe (Te) 56 64 57
Ni (Te) 58 60 62
Ti (m) 48 46 47
C (m) 12 13 14




Figure 1. SIMS mass 35
negative ion depth
profile overlaid on
mercury positive ion
mass 202 depth profile
for NVESD MBE
sample number 0706.

We identified the SIMS mass 35 negative ion as chlorine by confirming the
correct isotopic ratio from the ion intensity data collected at mass 35 and
mass 37. Figure 1 shows the SIMS mass 35 negative ion depth profile for the
NVESD MBE sample number 0706. In this case we also profiled and moni-
tored the mercury positive ion at mass 202, and overlaid the two profiles to
determine where the interface between the Hg, Cd,Te epilayer and the
Cd,_yZn,Te substrate was positioned. A spike in the chlorine ion concentra-
tion can be observed at the top surface of the Hg, Cd,Te epilayer and also
at the Hg, Cd,Te/Cd,_,Zn,Te interface. The chlorine ion signal intensity
after the initial surface spike remains fairly constant throughout the entire
6-um MBE Hg, Cd,Te layer and into the underlying Cd,_,Zn,Te substrate.
The intensity of the chlorine ion at mass 35 appears slightly higher in the
epitaxial layer than in the substrate. This may be related to the ion yield,
surface potential changes, or collection efficiency issues rather than an ac-
tual change in the concentration of the chlorine impurity. As a reference
sample, we next profiled a clean silicon wafer to eliminate system contami-
nation and other artifacts as possible explanations for the high chlorine lev-
els observed in the MBE Hg, ,Cd Te layers. The CI-35 depth profile of the
silicon wafer exhibited the expected surface concentration spike, followed,
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Figure 2. Chlorine
mass 35 SIMS depth
profile of a commercial
colloidal graphite used
as an adhesive to
attach II-VI substrates
to mounting block in
MBE machine.

after several sweeps, by a rapid decrease to the background noise level. In
an effort to determine the source(s) of the chlorine contamination, we ana-
lyzed a number of Cd, ,Zn,Te and CdTe substrates and process-related
materials.

One method of mounting the samples to the molybdenum block in the MBE
system involved the use of commercial aquadag or colloidal graphite con-
ductive adhesives. We acquired a C1-35 SIMS (fig. 2) profile for the adhesive
mounted on a silicon wafer. This tended to indicate that the colloidal graphite
adhesive was a major source of chlorine contamination in the MBE layers.
When we modified the sample-mounting procedure to a gallium-based pro-
cess, the SIMS mass 35 depth profile exhibited a dramatically reduced chlo-
rine ion intensity (fig. 3). The Hall data obtained from these subsequent
Hg, .Cd,Te layers indicated that the n-type carrier concentration had been
reduced from approximately 10" cm™ to the mid- to low-10" cm™ range.
However, some of the subsequent MBE Hg, .Cd,Te/Cd,_,Zn,Te structures
still exhibited Cl-35 signatures in the epitaxial layers and substrates. We
then analyzed a number of commercial Cd,_,Zn,Te substrates. We acquired
depth profiles from substrates from different commercial sources. In agree-
ment with the work of Faurie et al [12] and Wijewarnasuriya et al [13,14],
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Figure 3. SIMS
mass 35 depth
profile of an MBE-
grown Hg, .Cd,Te
layer acquired after
replacing colloidal
graphite adhesive
with gallium.
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the chlorine levels in the commercial substrates from different vendors var-
ied widely. Figure 4 shows an example of a commercial Cd, ,Zn,Te sub-
strate with a high chlorine background-impurity level. Figure 5 shows a
SIMS profile of a commercial CdTe substrate exhibiting noise-level bulk Cl-
35 intensity. The data clearly indicate that the commercial Cd,_,Zn,Te sub-
strates can have significantly different concentrations of chlorine and/or
other electrically active impurities that can negatively impact the viability
of these substrates for reproducible device-quality Hg, ,Cd,Te epitaxial layer
growth. Several of these contaminated epitaxial layers were analyzed with
a Cameca 4F at an industrial laboratory. Indicated chlorine concentrations,
based on the relative sensitivity factors for the Cameca, were on the
order of 10" cm™, which was in good agreement with the results of the Hall
measurements.



Figure 4. Example of
mass 35 SIMS depth
profile of a commercial
Cdy_yZnyTe substrate
characterized with a
high chlorine
background impurity
level.

Figure 5. SIMS depth
profile of a commercial
CdTe substrate
exhibiting noise-level
bulk C1-35 intensity.
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Figure 6. Positive ion
depth profile of NVESD
MBE Hg,_,Cd,Te
sample number 022500.

When NVESD initiated doping experiments in the microfactory, control of
the n-type carrier concentration again became an issue. Mixed conduction,
which becomes more of an issue at lower carrier concentrations, was not a
factor in these samples because the n-type carrier concentration was in the
10™ cm™ range. Control of the indium concentration in these layers could
not be accomplished through control of the indium effusion cell tempera-
ture. To determine the source of the indium background, a 12.6-um-thick
MBE Hg,_Cd,Te layer, sample number 022500, was grown on a bulk
Cd,_,Zn,Te substrate. The growth run was terminated with a 350-A layer of
CdTe. The epitaxial layer consisted of three distinct steps. A 4-um nominal
x = 0.51 layer was grown first. Then the CdTe effusion cell temperature was
increased and a 3.2-um x = 0.62 layer was grown. In step three, the Te effu-
sion cell temperature was increased again and a 5.4-um layer with an x-value
of 0.52 was deposited. Figure 6 shows the positive ion depth profile of this
film. The intensity of the indium-115 ion shows a sharp increase between
steps 1 and 2. At the step 2 to 3 transition, the indium ion intensity returns
to the general level associated with step 1. The SIMS analysis clearly indi-
cated that the CdTe effusion cell was the source of the uncontrolled indium
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doping of these layers. MBE Hg,_,Cd, Te layers exhibiting n-type carrier con-
centrations in the low 10% cm range were obtained when a new CdTe effu-
sion cell was incorporated into the microfactory system, and the configura-
tion of the effusion cells in the MBE system was modified.

In conclusion, we applied SIMS analysis to a series of CdTe and Cd,_,Zn,Te
substrates and MBE Hg,_.Cd,Te layers to determine the identity and source
of high n-type carrier concentrations in epitaxial layers grown in a novel
Hg, .Cd,Te materials growth and device-fabrication tool being developed
at the NVESD. We determined chlorine to be a major contributor to the

n-type behavior and identified mounting procedures and substrates with
high chlorine impurity levels as the major sources of contamination. We
also established the root cause of the lack of control in the indium doplng
process in the microfactory system.
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